Amazon Web Services Launches AWS Lambda
Easily run any code as an AWS-operated scalable, secure, and reliable cloud service

SEATTLE — (Nov XX, 2014) — Amazon Web Services LLC (AWS), an Amazon.com company (NASDAQ:AMZN), today announced
the introduction of AWS Lambda, the simplest way to run code in the cloud. Previously, running code in the cloud meant
creating a cloud service to host the application logic, and then operating the service, requiring developers to be experts in
everything from automating failover to security to service reliability. Lambda eliminates the operational costs and learning
curve for developers by turning any code into a secure, reliable and highly available cloud service with a web accessible end
point within seconds. Lambda uses trusted AWS infrastructure to automatically match resources to incoming requests, ensuring
the resulting service can instantaneously scale with no change in performance or behavior. This frees developers to focus on
their application logic — there is no capacity planning or up-front resource type selection required to handle additional traffic.
There is no learning curve to get started with Lambda — it supports familiar platforms like Java, Node.js, Python and Ruby, with
rich support for each language’s standard and third-party libraries. Lambda is priced at $XXX for each request handled by the
developer’s service and SYYY for each 250ms of execution time, making it cost effective at any amount of usage. To get started,
visit http://aws.amazon.com/Lambda.

"Lambda has enabled us to deliver a world class cross device photo sharing app.” says CTO of XXX. "We had great success with
our app on iOS, hitting 1M downloads in 3 weeks, which led to a huge demand for the Android version. As we considered ways
to leverage the cloud to make our app cross platform, we chose Lambda as the cost-effective choice to host our critical image
processing logic. The support for JavaScript and Git made it easy for us to get our backend up and running within a few days.
Previously, we would have incurred a huge management and operational overhead to maintain our user promise of fast and
reliable response time for our customers as they access their pictures. With Lambda and AWS, we know we have the scale,
stability and performance to support our customers even in periods of unpredictable demand.”

Using Lambda is simple. Developers express their application logic as they choose — as a one-line Python script, a Java
application using native JNI libraries, or even a binary executable compiled from C or C++. When ready, developers can upload
their code as a ZIP file, point Lambda to their Git repository, or author code directly from any browser using the AWS Console.
Lambda makes it easy to write code that securely integrates other AWS services, with built in support for AWS SDKs and
automatic integration with AWS Identity management (IAM) and Cognito Identity Broker. Lambda turns the code into a secure,
highly available service within seconds that can be called from any connected device or app and requires no code or
configuration changes to handle additional traffic. Developers retain full visibility over the functional and operational
performance of their code by monitoring their service using the AWS Lambda console and troubleshooting issues using Amazon
CloudWatch Logging.

"Lambda has been an accelerator for my team to port and launch multiple services as we embrace the cloud.” says Head of
Corporate Development at XXX. “We have been using Lambda for everything from automating instant account balance updates
based on customer trade notifications, to running nightly backups and scrubbing of transaction data to S3. Handling a mix of
internal and external users typically presents security challenges, but Lambda incorporates a lot of AWS best practices and
controls that makes it just as easy for us to securely connect to our data stored in AWS as well as our internal services. In the
past, managing our infrastructure has gotten in the way of quickly iterating on what our customers and internal users want.
With Lambda, my developers don’t have to be in the business of operating production services and can focus on quickly
delivering differentiated business functionality within hours and days, not weeks. Lambda has also ensured my team hasn’t
given up anything in terms of tuning performance and debugging capabilities by going with a provider.”

Lambda charges for the total number of requests an application handles and the resources it consumes in units of 250ms and
WWW GB, so developers pay only for what they use, without the complexity or commitment of up-front reservations. “Lambda
is cost effective at one request or thousands per second, all with the same customer code,” said Vice President of AWS Mobile.
“Developers can wire up any application, script, or process to execute when needed, confident that there will never be a charge
for idle time. Short-lived tasks, tasks where the scale changes rapidly, and periodic tasks are as cost effective as steady-state
workloads.”

Lambda is available immediately in all AWS regions. The first XXX requests and YYY MB-seconds per month are free to all users.
For complete pricing details, visit aws.amazon.com/lambda.

http://aws.amazon.com/Lambda

External FAQ
General

1. Whatis Lambda?

Lambda is a secure, reliable and scalable service for running stateless applications in the AWS cloud. Lambda is ideal for
developers who want to “just run some code” but have limited expertise or investment in cloud operations and do not want the
management and operational overhead of owning a server pool. Lambda manages and scales the servers required to host and
execute application code for developers, allowing them to focus on their application logic and stay productive by focusing on
the problems they’re trying to solve.

2. Who should use Lambda?

Lambda is an ideal solution for developers who don’t have expertise to manage infrastructure, or do not require the investment
to do so in order to “just run some code”. Lambda targets ease of use and developer productivity by defining a standard
operating system and language runtime versions; all developers provide is their code and any non-standard libraries it needs.
Lambda abstracts away the operational aspects of running code in the cloud, so developers don’t think about selecting instance
types, cross-availability zone failover, or patching the operating system, runtime, or libraries, while still benefiting from the
security, scalability, and availability of AWS. For developers who require direct access to the Amazon EC2 instances or who want
to customize their environment, AWS Elastic Beanstalk offers an easy way to deploy and manage complete applications where
developers retain control over the AWS resources.

3. What kind of applications can | use Lambda for?

Lambda can be used to host any application regardless of expected traffic, language and size that don’t require a highly
customized environment, long-lived state, or persistent database connection. Applications should store any persistent data in
services like Amazon S3 or Amazon DynamoDB, and can be as simple as a single line of code or include multiple files and
libraries (even natively implemented ones). Developers can create handlers that respond to other AWS service events,
application backend services for mobile and tablet apps, run hosted cron jobs, and more. Authoring new applications is easy
because it’s written in familiar languages and uses existing libraries, including the built-in AWS SDKs.

Developing and deploying applications
4. How do I create and deploy an application?
Developing and deploying applications with Lambda is easy:

e Store the application code, and any required libraries, in Amazon S3 as a ZIP file.
e Use the AWS Console, command line, or Lambda invoke API to deploy the application.

5. How does my code get called when an application is invoked?

File naming conventions (“main.py”) and optional code annotations make it easy to call a specific method in an application from
a mobile client SDK or in response to an Amazon S3 or Amazon DynamoDB update event. This enables applications to be as
simple and targeted as possible —an application can be as little as a one-line method in a single file. There are no complex
frameworks to learn, deploy, or maintain. Python WSGI, Ruby Rack, and Node.js invocation patterns are also supported, so
application authoring feels natural to developers familiar with web service implementations in those languages.

6. How do | deploy updates to an existing application to Lambda?

Save the new version in S3 or use the Simple Deployment Service to update it directly from a Git repository. The deployment
process is the same when deploying code for the first time or updating an existing application: Just call Lambda’s update
application APl with the URL of the code. Within a few seconds, new invocations of the application will be using the updated
version.

7. How do I develop and test applications on my desktop?

Because Lambda uses stock versions of the language runtimes and standard libraries, developers can easily develop, test, and
debug their code on a desktop or their own EC2 instances with the same environment that will be used when running it on
Lambda.

8. How can | optimize my applications to run on Lambda?

Developers can lower costs and improve performance by minimizing startup and shutdown overhead, ensuring that each time
an application is invoked it immediately begins doing useful work. Using the standard (default) version of libraries minimizes
deployment and startup overhead.

Languages and libraries

9. What languages and libraries does Lambda support?

Lambda allows you to write applications in Java, JavaScript, Ruby and Python.
10. How can my applications access other AWS services?

Any service or data accessible from the Internet is available to applications hosted by Lambda. Outbound HTTP and HTTPS
connections work normally; there are no special APIs to learn or use. Client SDKs for AWS services are preinstalled for
convenience.

11. What if a library | want to use isn’t available?

Developers can bundle third party libraries with their code, allowing them to use libraries (or versions of libraries) that aren’t
available by default. Native libraries are supported.

12. How does Lambda maintain the runtime environment?

Lambda handles operating system, language runtime, standard library, and preinstalled third-party library updates while
ensuring continuous high availability. Developers do not need to take any explicit action to benefit from the automated
maintenance of these software frameworks. Application code and libraries provided by developers will not be altered.

13. How does Lambda handle major updates to language runtimes?

Lambda offers the most popular version as the default runtime for each supported language. Other supported runtime versions
can be selected in an application’s configuration file.

14. Are there restrictions on the code | can run in Lambda?

Applications hosted by Lambda are stateless; persistent state should be stored in Amazon S3, Amazon DynamoDB, or another
Internet-available storage service. Inbound network connections are managed by Lambda. For security reasons, some low-level
system calls are restricted, but language features, and most libraries, function normally. Local file system access is intended as a
temporary scratch space and is deleted between invocations. These restrictions enable Lambda to launch and scale applications
on behalf of developers by ensuring that their code can run on Lambda infrastructure and that the service can launch as many
copies of their application as needed to scale to the incoming request rate.

Invoking applications

15. How do | invoke my Lambda application?

Once an application has been deployed, it can be called programmatically through Lambda’s invoke API, from the command
line, or through the AWS Console. Developers can also call it from a mobile client, refer to it in an Amazon Simple Workflow
Service crontab file, set it as the handler for an Amazon S3 or Amazon DynamoDB update, or name it as an Amazon Simple
Notification Service publication target. Applications can also be invoked from the command line and through the AWS Console.

16. How do | invoke my Lambda application in response to an Amazon S3 PUT or COPY operation?

Use Amazon S3’s SetUpdateHandler API to identify the Lambda application that represents the handler, the bucket and path to
respond to, and whether to handle PUT, COPY, or both types of updates. After that, every successful PUT or COPY operation will
trigger the application, enabling it to react to the S3 operation.

17. How do | invoke my Lambda application in response to an Amazon DynamoDB update?

Use Amazon DynamoDB’s SetTableHandler API to identify the table to track and the Lambda application to invoke when the
table’s content changes. After that, every successful write to the table in question will trigger the corresponding application,
enabling it to react to the DynamoDB update.

18. How can |l invoke my Lambda application as a hosted cron job?

Developers have two options: In many cases, they can simply indicate the time of day to run when configuring applications
using the Lambda console Ul, command line tools, or programmatic API. For more complex scenarios, Amazon Simple Workflow
Service supports the full power of crontab-specified jobs, allowing developers to identify activities within them to execute using
Lambda.

19. How can |l invoke my Lambda application as a scheduled batch job?

Developers can execute Lambda applications as batch jobs through the Lambda API as well as from within their application
code. They can also maintain their own job queue using Amazon Simple Queue Service (SQS) and use Lambda’s integration with
SQS to monitor it for jobs to run.

Security

20. How does Lambda secure applications?

Applications execute in a sandbox that isolates them from one another, protecting the integrity of the code and data they
contain.

21. How can | control the services and data accessible to an application?

Integration between Lambda and AWS Identity and Access Management (IAM) enables developers and administrators to
explicitly control the data and services accessible to an application by assigning it a security role. This approach ensures that
credentials can be constrained to the minimum necessary and that they possess limited lifespans.

22. How does Lambda secure my source code?

Lambda uses file system isolation techniques to ensure that each application can see only its own code. Application code in
transit inside the service is always encrypted. Fixity tests are employed at multiple levels to prevent unanticipated changes to
the code outside of developer-initiated deployments. Backup copies of code are stored in S3 using server-side encryption (SSE).

Capacity and Scale
23. How quickly can my application start scaling to requests?

Because it operates the underlying compute resources for all users, Lambda combines low latency execution with nearly
instantaneous scalability — every time an application is invoked, Lambda quickly locates free capacity and securely runs the
code. Infrequent or periodic jobs are cost effective, sharing capacity with other users and only charging for actual execution
time. “Bursty” or unpredictable workloads, such as cloud-hosted mobile app backends that may experience sudden surges in
popularity, scale seamlessly using AWS infrastructure. Developers aren’t required to predict their scaling needs: Per-second
memory billing enables Lambda to be both highly responsive and cost effective even for unpredictable or rapidly varying loads.

24. How does Lambda protect me from overcrowding effects?

When an application is invoked, the service automatically places it onto an EC2 instance with sufficient capacity to execute it.
Lambda continuously monitors the performance of each application execution as well as the overall performance of its
compute fleet and acquires additional capacity automatically to avoid overcrowding. Lambda’s pricing model also ensures that
developers only pay for the time that their code is running.

25. How quickly can Lambda scale up and down?

Because Lambda works by running an application every time it’s triggered, it scales to match the rate of whatever is triggering
it. Since applications are billed for CPU use, the associated charges (rounded up to the next second) end as soon as the
application completes. Lambda imposes no warm-up or cool-down periods or charges.

26. What type of availability does Lambda offer?

Lambda is designed to provide 99.99% availability for both the service itself and for the applications running on it. There are no
maintenance windows or scheduled downtimes.

Limits and Quotas

27. How long can an application run?

Applications representing batch and timed jobs are terminated after approximately four hours of continuous (wall clock)
uptime, though maintenance or security needs may occasionally require them to be terminated earlier. Applications initiated by
an HTTP request must complete within the request’s lifetime, typically within 30 seconds, although they may invoke batch jobs
that outlive the original request.

28. How much memory can an application use?

Each running application can allocate up to 1 GB of virtual memory.

Performance
29. What is the latency of invoking an application using the Lambda API?

Applications in steady use have typical latencies in the range of 20-50ms, determined by timing a simple “echo” application
from a client hosted in Amazon EC2. Latency will be higher the first time an application is deployed and when an application has
not been used recently.

30. How powerful is the CPU on which my code runs?
Applications running on Lambda execute on vCPUs with a minimum rating of 1 ECU.
31. How does Lambda support parallel processing?

Developers can run multiple applications and/or multiple copies of the same application simultaneously. They can also access
Lambda APIs programmatically from within applications, using the AWS client SDK, which allows them to delegate and
orchestrate work by running other applications.

Developers can use these techniques to expose parallelism inherent in their code. As an example, to create ten different
representations of an image when the original is stored in S3, a single application could serially produce all ten representations.
Alternatively, ten handlers could be registered, each producing just one of the required transformations. The latter approach
will typically complete faster by enabling Lambda and Amazon S3 to parallelize the work.

Internal FAQ

1. When would we direct a customer to [not] use Lambda?

Mobile backends and any AWS service-embedded scripting uses (such as custom CloudWatch actions or custom video
transcoder rules) will use Lambda “under the hood.” Customers with these use cases will implicitly select this service.

AWS event handlers and batch/cron jobs where the job is readily expressed as an application are good targets for Lambda,
which will offer the customer convenience and simplicity versus setting up their own instances, and where the service can
complete jobs quickly by offering nearly unlimited burst capability to run many applications in parallel. At the same time,
Lambda will be cost effective, compacting jobs onto the minimal set of EC2 instances, selecting instance types to minimize
customer cost, and avoiding any charge for intra-hour idle time. Customers with these use cases may (and often should) target
Lambda.

Customers with existing applications (“lift and shift”), those who want access to the underlying EC2 instances, who wish to
write in languages other than those supported by the service, or who need “stateful” code cannot use Lambda and should
target Beanstalk/EC2.

2. What are the Lambda tenets?
Our tenets, unless you know better ones, are:

e Security without complexity — Our service will protect customer data from unauthorized access and will be resilient
to attack. We will support security features, perform audits, and achieve certifications that address developers’ real
and perceived security needs. Developers will benefit from up-to-date security patches at the operating system,
runtime, and library level without taking explicit action. Each supported language will feel normal, despite running in
a secured environment.

o Simple and easy — We will deliver a “NoOps” service that makes developers’ lives easier by handling undifferentiated
management and operational overhead for them. Defaults will be reasonable for the majority of users and options
will be few and easy to understand. Users will have self-service access to deploy and manage their applications.

e Scales up and down (to zero) — Our service will scale customer applications without changes to their code or
configuration. We will architect such that one application invocation per month and 1,000 per second are both well
supported. We will automate fleet capacity analysis to avoid limiting customer capability.

e Cost effective at any scale — Our service will target fine-grained pay-for-use; developers will not pay for idle time. We
will own the problem of application placement so that developers never experience waste through underutilized
hosts. We will seek to minimize both costs and billing granularity.

e AWS integration — Our service will benefit from other AWS services by making them easy for application developers
to access from within applications. We will make other AWS services better (and better together) by providing a
common, hosted AWS application solution. Event triggers, rules engines, hosted cron jobs, and custom actions will be
easy to host on Lambda.

o Reliable — Both our service and the applications running on it will provide predictable and reliable operational
performance. We will provide developers with availability and latency targets and then hold ourselves to a higher bar
internally. We will engineer our service to be resilient to failure and to minimize the impact any failure can have. We
will monitor, and seek to optimize, aspects of application performance that we control through fleet composition,
capacity, and job placement.

3. What operational metrics will we measure and optimize to improve customer experience?

We will seek to optimize three key dimensions of the customer experience for applications and applications running on
Lambda: latency, throughput, and availability, and we will monitor a fourth, jitter, to protect customer experience.

Latency

We plan to offer a publicly visible measure of latency through a canary client running in EC2 that repeatedly invokes a Lambda-
hosted ‘echo’ application. Monitoring and graphing the resulting latency from the client perspective offers a way to convey to
developers the type of latency they will experience when using the service.

Internally we will also measure server-side latency (request arrival to response delay), the efficacy of our process retention and
code caching techniques, and latency of process invocation to execution of customer code.

Throughput

We will measure per-host resource contention to identify applications experiencing system-induced delays. Paging rates, CPU
utilization, and network bandwidth enable us to measure contention in key resources. Sustained high measures of any one
indicates an over-subscribed compute host; sustained high measures fleet-wide trigger calls for additional EC2 capacity to
increase the resource and/or a fleet mix shift to expose more of the needed resource. We also report wall clock execution time
in logs and via Amazon CloudWatch.

Availability

Availability of the Lambda service itself (our control plane) will be monitored and reported similarly to other AWS services.
Availability for applications (our “invoke” plane) will be measured and reported on a per-application basis through CloudWatch.

4. How can Lambda save AWS customers money?

Lambda offers fine-grained duration-based pricing. Like Amazon S3, it charges customers only for what they actually do with
the service. Our pricing approach ensures that customers cannot overprovision or underutilize by design: customers utilize
100% of the computing power they’re paying for when they run an application. Small and medium customers will benefit from
the “scales to zero” aspect of the service, paying nothing at all for applications that are able to receive requests but not actually
executing. Many “right tail” customers will fit comfortably into the perennial free tier and pay nothing at all for infrequently
invoked applications, without giving up availability, burst capacity, or fault tolerance.

Large customers benefit from Lambda’s placement engine, which effectively compacts their workloads: Each new request is
placed with respect to minimizing the number of instances dedicated to that account (subject to maintaining latency,
throughput, and availability goals). Spiky workloads, heterogeneous workloads, and short-lived jobs such as cron or batch
applications all use capacity efficiently without any additional IT oversight on the customer’s behalf, potentially saving them
money through higher utilization as well as reduced IT staffing needs.

Lambda can also lower TCO by maintaining the operating system, language runtime, and libraries on the customer’s behalf and,
in collaboration with other AWS services, offering security, scaling, high availability, and job control for the applications it runs.
Lower IT cost and complexity is a key requirement for mobile and tablet backend developers in particular, where the
unpredictable and rapidly changing popularity of their apps makes accurate workload prediction difficult, but where
instantaneous scale-up in response to a suddenly popular app is an effective requirement to deliver a great end-user
experience.

