
 

Title: Distributed Computing Manifesto 

Created: May 24, 1998 

Revised: July 10, 1998 

Background 
It is clear that we need to create and implement a new architecture if Amazon's processing is to 
scale to the point where it can support ten times our current order volume. The question is, what 
form should the new architecture take and how do we move towards realizing it? 

Our current two-tier, client-server architecture is one that is essentially data bound. The 
applications that run the business access the database directly and have knowledge of the data 
model embedded in them. This means that there is a very tight coupling between the 
applications and the data model, and data model changes have to be accompanied by application 
changes even if functionality remains the same. This approach does not scale well and makes 
distributing and segregating processing based on where data is located difficult since the 
applications are sensitive to the interdependent relationships between data elements. 

Key Concepts 
There are two key concepts in the new architecture we are proposing to address the 
shortcomings of the current system. The first, is to move toward a service-based model 
and the second, is to shift our processing so that it more closely models a workflow 
approach. This paper does not address what specific technology should be used to 
implement the new architecture. This should only be determined when we have 
determined that the new architecture is something that will meet our requirements and 
we embark on implementing it. 

Service-based model 
We propose moving towards a three-tier architecture where presentation (client), business logic 
and data are separated. This has also been called a service-based architecture. The applications 
(clients) would no longer be able to access the database directly, but only through a well-defined 
interface that encapsulates the business logic required to perform the function. This means that 
the client is no longer dependent on the underlying data structure or even where the data is 
located. The interface between the business logic (in the service) and the database can change 
without impacting the client since the client interacts with the service though its own interface. 
Similarly, the client interface can evolve without impacting the interaction of the service and the 
underlying database. 

Services, in combination with workflow, will have to provide both synchronous and 
asynchronous methods. Synchronous methods would likely be applied to operations for which 
the response is immediate, such as adding a customer or looking up vendor information. 
However, other operations that are asynchronous in nature will not provide immediate response. 



 

An example of this is invoking a service to pass a workflow element onto the next processing 
node in the chain. The requestor does not expect the results back immediately, just an indication 
that the workflow element was successfully queued. However, the requestor may be interested 
in receiving the results of the request back eventually. To facilitate this, the service has to 
provide a mechanism whereby the requestor can receive the results of an asynchronous request. 
There are a couple of models for this, polling or callback. In the callback model the requestor 
passes the address of a routine to invoke when the request completed. This approach is used 
most commonly when the time between the request and a reply is relatively short. A significant 
disadvantage of the callback approach is that the requestor may no longer be active when the 
request has completed making the callback address invalid. The polling model, however, suffers 
from the overhead required to periodically check if a request has completed. The polling model 
is the one that will likely be the most useful for interaction with asynchronous services. 

There are several important implications that have to be considered as we move toward a 
service-based model. 

The first is that we will have to adopt a much more disciplined approach to software 
engineering. Currently much of our database access is ad hoc with a proliferation of Perl scripts 
that to a very real extent run our business. Moving to a service-based architecture will require 
that direct client access to the database be phased out over a period of time. Without this, we 
cannot even hope to realize the benefits of a three-tier architecture, such as data-location 
transparency and the ability to evolve the data model, without negatively impacting clients. The 
specification, design and development of services and their interfaces is not something that 
should occur in a haphazard fashion. It has to be carefully coordinated so that we do not end up 
with the same tangled proliferation we currently have. The bottom line is that to successfully 
move to a service-based model, we have to adopt better software engineering practices and chart 
out a course that allows us to move in this direction while still providing our "customers" with 
the access to business data on which they rely. 

A second implication of a service-based approach, which is related to the first, is the significant 
mindset shift that will be required of all software developers. Our current mindset is data-
centric, and when we model a business requirement, we do so using a data-centric approach. 
Our solutions involve making the database table or column changes to implement the solution 
and we embed the data model within the accessing application. The service-based approach will 
require us to break the solution to business requirements into at least two pieces. The first piece 
is the modeling of the relationship between data elements just as we always have. This includes 
the data model and the business rules that will be enforced in the service(s) that interact with the 
data. However, the second piece is something we have never done before, which is designing 
the interface between the client and the service so that the underlying data model is not exposed 
to or relied upon by the client. This relates back strongly to the software engineering issues 
discussed above. 



 

Workflow-based Model and Data Domaining 

Amazon's business is well suited to a workflow-based processing model. We already have an 
"order pipeline" that is acted upon by various business processes from the time a customer order 
is placed to the time it is shipped out the door. Much of our processing is already workflow-
oriented, albeit the workflow "elements" are static, residing principally in a single database. An 
example of our current workflow model is the progression of customer_orders through the 
system. The condition attribute on each customer_order dictates the next activity in the 
workflow. However, the current database workflow model will not scale well because 
processing is being performed against a central instance. As the amount of work increases (a 
larger number of orders per unit time), the amount of processing against the central instance will 
increase to a point where it is no longer sustainable. A solution to this is to distribute the 
workflow processing so that it can be offloaded from the central instance. Implementing this 
requires that workflow elements like customer_orders would move between business processing 
("nodes") that could be located on separate machines. Instead of processes coming to the data, 
the data would travel to the process. This means that each workflow element would require all 
of the information required for the next node in the workflow to act upon it. This concept is the 
same as one used in message-oriented middleware where units of work are represented as 
messages shunted from one node (business process) to another. 

An issue with workflow is how it is directed. Does each processing node have the autonomy to 
redirect the workflow element to the next node based on embedded business rules (autonomous) 
or should there be some sort of workflow coordinator that handles the transfer of work between 
nodes (directed)? To illustrate the difference, consider a node that performs credit card charges. 
Does it have the built-in "intelligence" to refer orders that succeeded to the next processing node 
in the order pipeline and shunt those that failed to some other node for exception processing? Or 
is the credit card charging node considered to be a service that can be invoked from anywhere 
and which returns its results to the requestor? In this case, the requestor would be responsible for 
dealing with failure conditions and determining what the next node in the processing is for 
successful and failed requests. A major advantage of the directed workflow model is its 
flexibility. The workflow processing nodes that it moves work between are interchangeable 
building blocks that can be used in different combinations and for different purposes. Some 
processing lends itself very well to the directed model, for instance credit card charge processing 
since it may be invoked in different contexts. On a grander scale, DC processing considered as a 
single logical process benefits from the directed model. The DC would accept customer orders 
to process and return the results (shipment, exception conditions, etc.) to whatever gave it the 
work to perform. On the other hand, certain processes would benefit from the autonomous 
model if their interaction with adjacent processing is fixed and not likely to change. An example 
of this is that multi-book shipments always go from picklist to rebin. 

The distributed workflow approach has several advantages. One of these is that a business 
process such as fulfilling an order can easily be modeled to improve scalability. For instance, if 
charging a credit card becomes a bottleneck, additional charging nodes can be added without 
impacting the workflow model. Another advantage is that a node along the workflow path does 
not necessarily have to depend on accessing remote databases to operate on a workflow element. 



 

This means that certain processing can continue when other pieces of the workflow system (like 
databases) are unavailable, improving the overall availability of the system. 

However, there are some drawbacks to the message-based distributed workflow model. A 
database-centric model, where every process accesses the same central data store, allows data 
changes to be propagated quickly and efficiently through the system. For instance, if a customer 
wants to change the credit-card number being used for his order because the one he initially 
specified has expired or was declined, this can be done easily and the change would be instantly 
represented everywhere in the system. In a message-based workflow model, this becomes more 
complicated. The design of the workflow has to accommodate the fact that some of the 
underlying data may change while a workflow element is making its way from one end of the 
system to the other. Furthermore, with classic queue-based workflow it is more difficult to 
determine the state of any particular workflow element. To overcome this, mechanisms have to 
be created that allow state transitions to be recorded for the benefit of outside processes without 
impacting the availability and autonomy of the workflow process. These issues make correct 
initial design much more important than in a monolithic system, and speak back to the software 
engineering practices discussed elsewhere. 

The workflow model applies to data that is transient in our system and undergoes well-defined 
state changes. However, there is another class of data that does not lend itself to a workflow 
approach. This class of data is largely persistent and does not change with the same frequency or 
predictability as workflow data. In our case this data is describing customers, vendors and our 
catalog. It is important that this data be highly available and that we maintain the relationships 
between these data (such as knowing what addresses are associated with a customer). The idea 
of creating data domains allows us to split up this class of data according to its relationship with 
other data. For instance, all data pertaining to customers would make up one domain, all data 
about vendors another and all data about our catalog a third. This allows us to create services by 
which clients interact with the various data domains and opens up the possibility of replicating 
domain data so that it is closer to its consumer. An example of this would be replicating the 
customer data domain to the U.K. and Germany so that customer service organizations could 
operate off of a local data store and not be dependent on the availability of a single instance of 
the data. The service interfaces to the data would be identical but the copy of the domain they 
access would be different. Creating data domains and the service interfaces to access them is an 
important element in separating the client from knowledge of the internal structure and location 
of the data. 

Applying the Concepts 
DC processing lends itself well as an example of the application of the workflow and data 
domaining concepts discussed above. Data flow through the DC falls into three distinct 
categories. The first is that which is well suited to sequential queue processing. An example of 
this is the received_items queue filled in by vreceive. The second category is that data which 
should reside in a data domain either because of its persistence or the requirement that it be 
widely available. Inventory information (bin_items) falls into this category, as it is required both 
in the DC and by other business functions like sourcing and customer support. The third 



 

category of data fits neither the queuing nor the domaining model very well. This class of data is 
transient and only required locally (within the DC). It is not well suited to sequential queue 
processing, however, since it is operated upon in aggregate. An example of this is the data 
required to generate picklists. A batch of customer shipments has to accumulate so that picklist 
has enough information to print out picks according to shipment method, etc. Once the picklist 
processing is done, the shipments go on to the next stop in their workflow. The holding areas for 
this third type of data are called aggregation queues since they exhibit the properties of both 
queues and database tables. 

Tracking State Changes 
The ability for outside processes to be able to track the movement and change of state of a 
workflow element through the system is imperative. In the case of DC processing, customer 
service and other functions need to be able to determine where a customer order or shipment is 
in the pipeline. The mechanism that we propose using is one where certain nodes along the 
workflow insert a row into some centralized database instance to indicate the current state of the 
workflow element being processed. This kind of information will be useful not only for tracking 
where something is in the workflow but it also provides important insight into the workings and 
inefficiencies in our order pipeline. The state information would only be kept in the production 
database while the customer order is active. Once fulfilled, the state change information would 
be moved to the data warehouse where it would be used for historical analysis. 

Making Changes to In-flight Workflow Elements 

Workflow processing creates a data currency problem since workflow elements contain all of 
the information required to move on to the next workflow node. What if a customer wants to 
change the shipping address for an order while the order is being processed? Currently, a CS 
representative can change the shipping address in the customer_order (provided it is before a 
pending_customer_shipment is created) since both the order and customer data are located 
centrally. However, in a workflow model the customer order will be somewhere else being 
processed through various stages on the way to becoming a shipment to a customer. To affect a 
change to an in-flight workflow element, there has to be a mechanism for propagating attribute 
changes. A publish and subscribe model is one method for doing this. To implement the P&S 
model, workflow-processing nodes would subscribe to receive notification of certain events or 
exceptions. Attribute changes would constitute one class of events. To change the address for an 
in-flight order, a message indicating the order and the changed attribute would be sent to all 
processing nodes that subscribed for that particular event. Additionally, a state change row 
would be inserted in the tracking table indicating that an attribute change was requested. If one 
of the nodes was able to affect the attribute change it would insert another row in the state 
change table to indicate that it had made the change to the order. This mechanism means that 
there will be a permanent record of attribute change events and whether they were applied. 

Another variation on the P&S model is one where a workflow coordinator, instead of a 
workflow-processing node, affects changes to in-flight workflow elements instead of a 
workflow-processing node. As with the mechanism described above, the workflow coordinators 



 

would subscribe to receive notification of events or exceptions and apply those to the applicable 
workflow elements as it processes them. 

Applying changes to in-flight workflow elements synchronously is an alternative to the 
asynchronous propagation of change requests. This has the benefit of giving the originator of the 
change request instant feedback about whether the change was affected or not. However, this 
model requires that all nodes in the workflow be available to process the change synchronously, 
and should be used only for changes where it is acceptable for the request to fail due to 
temporary unavailability. 

Workflow and DC Customer Order Processing 

The diagram below represents a simplified view of how a customer order moved through 
various workflow stages in the DC. This is modeled largely after the way things currently 
work with some changes to represent how things will work as the result of DC isolation. 
In this picture, instead of a customer order or a customer shipment remaining in a static 
database table, they are physically moved between workflow processing nodes 
represented by the diamond-shaped boxes. From the diagram, you can see that DC 
processing employs data domains (for customer and inventory information), true queue 
(for received items and distributor shipments) as well as aggregation queues (for charge 
processing, picklisting, etc.). Each queue exposes a service interface through which a 
requestor can insert a workflow element to be processed by the queue's respective 
workflow-processing node. For instance, orders that are ready to be charged would be 
inserted into the charge service's queue. Charge processing (which may be multiple 
physical processes) would remove orders from the queue for processing and forward 
them on to the next workflow node when done (or back to the requestor of the charge 
service, depending on whether the coordinated or autonomous workflow is used for the 
charge service). 



 

 

© 1998, Amazon.com, Inc. or its affiliates. 

 


