GOSSIPS AND TELEPHONES

Brenda BAKER and Robert SHOSTAK *
Aiken Computation Laboratory. Hanard University, Cambridge, Mass, 021.8., USA

Received 3 September 1971

The following problem has circulated lately among mathematicians. Other solutions have been given independently by R T. Bumby and by Hajnal et al. [1].

The problem. There are n ladies, and each of them knows some item of gossip not known to the others. They communicate by telephone, and whenever one lady calis another, they tell each other all that they know at that time. How many calls are required before each gossip knows everything?

Answer. Let $f(n)$ be the minimum number of calls needed for n people. It is easily shown that $f(1)=0, f(2)=1, f(3)=3$ and $f(4)=4$. For $n>4,2 n-4$ calls are sufficient according to the following procedure: one of four "chief" gossips first calls each of the remaining $n-4$ gossips, then the four learn each other's (and hence everyone's) information in 4 calls (as $f(4)=4)$, and finally one of the four chiefs calls each of the other $n-4$ gossips.

Theorem 1. $f(n)=2 n-4$ for $n>4$.
Proof. Suppose to the contrary that for some $n>4, f(n) \leq 2 n-5$. Let m be the least such n and let S be any calling arrangement among m gossips requiring at most $2 m-5$ calls. We will obtain a contradiction based upon the following lemma.

Lemma 1. No gossip may hear her own information from another in S.

[^0]Proof. If gossip G can hear her ewn information in S, there is a sequence of calls $\left(G_{r}-G_{1}\right)\left(G_{1}-G_{2}\right) \ldots\left(G_{r}-G\right)$, listed in temporal order. By omitting gossip ($;$, we obtain from S a new arrangement T of calls among $m-1$ gossips as follows:

Omit from S calls $\left(G-G_{1}\right)$ and $\left(G_{r}-G\right)$. In addition, for each gossip P wio mathe a call ($P-G$) (other than $\left(G-G_{1}\right)$ and $\left(G_{r}-G\right)$ of the above sequence) in S. let the G_{i} 's transmit P 's information in T as follows: Let t be the least i such that $\left(G_{i}-G_{i+1}\right)$ occurs after $(P-G)$ in S, if such a call exists, and r otherwise. Replace $(P-G)$ in S by a call $\left(P-G_{r}\right)$ in T, presening the ternporal ordering of the calls. The arrangement 7 will contain at most 20 m -1) 5 calls and it is casily verified that all ladies learn all of the gossip on T if they do so in S. The lemma follows by mimality of \cdots.

Conclusion of the proof of Theorem 1. By Lemma 1, a call is either the final call for both parties to the call in S or it is the final call for neither for after receiving gossin B 's final call, gossip A knows everything and would violate the lemma by later calling someone else). Also, a call is either the initial call for both parties of for neither fotherwise, if A makes her first call to B after B calls C. then information from C would propagate with A 's until it came back to C, contradicting Leama I).

Thus initiat and final calls account for m calls *. Let the remaining calls be described as intermediate calls and let $/ \mathrm{be}$ a graph with m nodes representing gossips and edges representing intermediate calls. Since there are at most $m-5$ intermediate calls and since $m \quad 1$ edges are needed for a graph ot m nodes to be connected, the graph / must contan at least five disjoint connected components. Information from a given gossip G can propagate into only two components (hers and her initial caller's) before any final calls are made. Similarly, after the instial calls have been made. information may be transmitted to her through the calls of only two components (hers and her final caller's). The:; the calls of at least two components of intermediate calls play no pari in propagating her information or informing her. For a gossip G, let $c(G)$ be the number of calls which are not used in transmitting information to her or from her.

At least n I cie ts are required to inform a given gossip completely and $n 1$ are required to transmit her information. By Lemma 1 the only

[^1]calls which can do both are those that she herself takes part in - otherwise she would hear her information from another. Thus at least In $2 \cdot u(i)$ calls are required to convey gossip G 's information and inform her, where $u\left(C^{\prime}\right)$ is the number of calls in which she participates. From $2 n 5 \geq 2 n: v(i)+c(i)$ we conclude that $v(G) \geq 3+c(G) \geq 3$. Since $u(G) \geq 3$ for each gossip G, every connected component of intermediate calls contains an edge - otherwise some gossip would make only an initial and a final call. According to the previous paragraph. the calls of at least two components are not used in transmitting information to or from G. Hence $(i) \geq 2$ and $u(i) \geq 5$ for all gossips $(i$, resulting in more than $2 r$ calls aitogether.

Acknowledgments

The authors wish to thank C.L. Liu for his comments and encouragement. and 0 . Klentman for his considerable help in clarifying the central argument of the proot.

Reference

|1| A Hamal. K. Milner and E. Seemeredi, A tere for the retephone diseaxe, Res. Paper No 106. Unv Calpary, Calgary, Alberta, Canada, January, I'071

[^0]: * Both authers are NSF-Pre-Do:ioral Fellows at Harvard University.

[^1]: * Ceally a call cannot be both mitial and final.

